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Abstract

To facilitate whole-genome association studies (WGAS), several high-density SNP genotyping arrays have been developed.
Genetic coverage and statistical power are the primary benchmark metrics in evaluating the performance of SNP arrays.
Ideally, such evaluations would be done on a SNP set and a cohort of individuals that are both independently sampled from
the original SNPs and individuals used in developing the arrays. Without utilization of an independent test set, previous
estimates of genetic coverage and statistical power may be subject to an overfitting bias. Additionally, the SNP arrays’
statistical power in WGAS has not been systematically assessed on real traits. One robust setting for doing so is to evaluate
statistical power on thousands of traits measured from a single set of individuals. In this study, 359 newly sampled
Americans of European descent were genotyped using both Affymetrix 500K (Affx500K) and Illumina 650Y (Ilmn650K) SNP
arrays. From these data, we were able to obtain estimates of genetic coverage, which are robust to overfitting, by
constructing an independent test set from among these genotypes and individuals. Furthermore, we collected liver tissue
RNA from the participants and profiled these samples on a comprehensive gene expression microarray. The RNA levels were
used as a large-scale set of quantitative traits to calibrate the relative statistical power of the commercial arrays. Our genetic
coverage estimates are lower than previous reports, providing evidence that previous estimates may be inflated due to
overfitting. The Ilmn650K platform showed reasonable power (50% or greater) to detect SNPs associated with quantitative
traits when the signal-to-noise ratio (SNR) is greater than or equal to 0.5 and the causal SNP’s minor allele frequency (MAF) is
greater than or equal to 20% (N = 359). In testing each of the more than 40,000 gene expression traits for association to each
of the SNPs on the Ilmn650K and Affx500K arrays, we found that the Ilmn650K yielded 15% times more discoveries than the
Affx500K at the same false discovery rate (FDR) level.
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Introduction

It has been estimated that the human genome contains more

than 5 million common single nucleotide polymorphisms (SNPs)

with minor allele frequencies (MAF) $10% [1–3], and 7.5 million

common SNPs with MAF $5% [4]. These SNPs may account for

the genetic risk of many common human disorders. Recently,

high-density SNP arrays have been introduced to allow research-

ers to conduct whole-genome association studies (WGAS). These

SNP array platforms are often benchmarked by their genetic

coverage and statistical power [4,5]. Here, genetic coverage of an

array platform is defined as the fraction of common SNPs

(MAF$5%) exceeding a predefined correlation threshold with at

least one SNP typed by the array. Statistical power in this setting

measures the likelihood to detect a statistically significant

association between a truly associated SNP marker and a trait.

There are two strategies to building whole-genome SNP arrays.

One is to randomly select SNPs that are relatively evenly spaced

across the genome, not taking into account the inter-SNP linkage

disequilibrium (LD) patterns, such as the Affymetrix 100K and

500K SNP arrays (denoted as Affx100K and Affx500K in this

article, respectively) [4,5]. The other is to select ‘‘tag SNPs’’ based

on measures of LD chosen to maximize genetic coverage, such as

Illumina HumanHap-300 -550K and -650Y arrays (denoted as

Ilmn300K, Ilmn550K and Ilmn650K, respectively) [4,5]. These

tag SNP microarrays were developed using the public HapMap

dataset [2,3,6].

The identification of tag SNPs is essentially a feature selection

problem. It has been well established in the machine learning field

that using an independently sampled test dataset is necessary to

guarantee an unbiased assessment of the selected features’

operating characteristics. It has also been shown that if the

evaluation takes place on the training dataset itself, then the

quality of the features’ performance is often anti-conservatively

over-estimated, commonly referred to as the overfitting problem

[7,8]. This problem exists in the context of identifying tag SNPs in

two ways: (i) SNP overfitting, where the same set of SNPs are

employed in both the training and evaluation steps; and (ii) sample

overfitting, where the same set of subjects are used in both the

training and evaluation steps.

The key operating characteristics of several whole-genome SNP

arrays have been evaluated recently on HapMap data [4,5,9]. These

studies may have been susceptible to both types of overfitting because

the HapMap subjects were used to select tag SNPs; these same
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subjects and tag SNPs were then used in estimating the genetic

coverage. Additionally, the small sample size of the HapMap data

may limit the accuracy of estimates of statistical power, an operating

characteristic that is critical for WGAS. Here, we present a study

with the following characteristics to overcome these potential

limitations: (i) the study subjects have been newly and independently

sampled, and thus represent an independent sample from HapMap

individuals, (ii) we have available a new set of genotyped SNPs which

were sampled independently from HapMap data, and (iii) the sample

size is relatively larger.

We utilized two commercially available high-density SNP arrays

on an American Caucasian cohort to obtain estimates of genetic

coverage for these different SNP panels that are robust to

overfitting. The estimates we obtain in this cohort are lower than

previous reports. In addition, liver RNAs were extracted and

profiled on a comprehensive gene expression microarray. By

simultaneously utilizing these thousands of gene expression traits

scored on a fixed set of genetic backgrounds, we obtain estimates

of the relative power of the different SNP genotyping arrays to

detect quantitative trait SNPs of varying effect sizes [10]. We also

directly quantify the impact of genetic coverage, SNP tagging, and

sample size on the power of WGAS.

Materials and Methods

Liver Study Dataset
Human liver tissue samples were collected as described in a

companion article [11]. In total, 359 American Caucasian subjects

with known gender (heretofore called the ‘‘Liver Study subjects’’)

were successfully SNP genotyped and mRNA profiled.

Genotyping. DNA specimens were extracted and sent to

Perlegen Sciences Inc. and Illumina Inc. for genotyping services

using Affx500K and Ilmn650K, respectively. There was an overlap

of .80,000 SNPs tiled on both SNP arrays. We found the two

platforms gave highly consistent (98.7%) genotypes on their shared

SNPs, suggesting both genotyping arrays are fairly accurate. We

filtered out SNPs with MAF ,5%, call rate ,90%, or Hardy-

Weinberg Test p-value ,1024. In total, 286K and 545K genotyped

autosomal SNPs on Affx500K and Ilmn650K, respectively, were

used in the analysis. Genotypes from Ilmn300K and Ilmn550K

were also derived as subsets of the Ilmn650 data, resulting in 296K

and 514K genotyped SNPs, respectively.

RNA expression profiling. Additionally, we purified RNA

from the tissue samples and measured the 39,280 gene

transcription levels using the Agilent platform. We adjusted the

expression values for gender, age, and medical center by using a

standard linear model. See Text S1 for specific details on

expression profiling and preprocessing.

HapMap Dataset
The HapMap data are comprised of 270 individuals from four

ethnic groups: (i) 30 trios from the Yoruba group in Ibadan,

Nigeria (YRI); (ii) 30 trios from the CEPH collection, which are

Utah residents with Northern and Western Europe ancestry

(CEU); (iii) 45 unrelated Han Chinese individuals from Beijing,

China (CHB); and (iv) 45 unrelated individuals from Tokyo, Japan

(JPT). The CHB and JPT samples are often considered as a single

East Asian sample [3]. The HapMap project has genotyped more

than 4 million SNPs, among which ,2.2 million SNPs are

common in CEU (MAF $5%) [4,9]. Additionally, Affymetrix Inc.

has genotyped these 270 individuals using Affx500K, and made

these results publicly available.

Identification of SNPs Independent from HapMap Data
Recall that the Affx500K platform harbors 90K common SNPs

that were not utilized in the HapMap project (referred to here as Affx

NonHapMap SNPs). The genotypes from the Affx500K platform

measured on the 359 Liver Study subjects therefore provide two key

sources of independent data: (i) genotypes of SNPs identified

independently from the HapMap project (the Affx NonHapMap

SNPs) and (ii) individuals sampled independently from the HapMap

project. This allowed us to study SNP selection overfitting and

sample overfitting, respectively, in calculating genetic coverage.

Given that SNPs on the Affx500K were randomly chosen, the 90K

Affx NonHapMap SNPs can be considered as a random sample of

the entire 5.3M NonHapMap SNPs. We therefore utilized these Affx

NonHapMap SNPs as a set of SNPs identified independently from

the HapMap data. Also note that the complementary Affx HapMap

SNPs (SNPs on Affx500K that are included in HapMap data)

represent a random subsample of the 2.2M HapMap SNPs. We

utilized these two classes of SNPs genotyped in our independently

sampled human cohort scored for thousands of gene expression traits

to estimate the true genetic coverage of the different SNP panels as

well as assess the power these panels afford to detect associations

between SNPs and traits (details below).

Estimating Genetic Coverage
Genetic coverage was calculated as the fraction of SNPs

exceeding a pre-defined r2 cutoff (r2
cutoff) with at least one SNP

typed by the microarray [5]. Herein, we employed two widely

used values of r2
cutoff, 0.8 and 0.9. Results were qualitatively

equivalent in the 0.7 to 0.9 range for r2
cutoff.

Assessing Overfitting of Previous Genetic Coverage
Estimates

Overfitting of genetic coverage estimates was assessed separately

for SNP overfitting and sample overfitting.

SNP overfitting. To systematically evaluate whether there has

been SNP overfitting in estimated genetic coverage, we compared

genetic coverage rates of Affx NonHapMap SNPs to Affx HapMap

SNPs on the Illm650K platform. A higher genetic coverage of Affx

HapMap SNPs is evidence for SNP overfitting. The SNPs

Author Summary

Advances in SNP genotyping array technologies have
made whole-genome association studies (WGAS) a readily
available approach. Genetic coverage and the statistical
power are two key properties to evaluate on the arrays. In
this study, 359 newly sampled individuals were genotyped
using Affymetrix 500K and Illumina 650Y SNP arrays. From
these data, we obtained new estimates of genetic
coverage by constructing a test set from among these
genotypes and individuals that is independent from the
SNPs and individuals used to construct the arrays. These
estimates are notably smaller than previous ones, which
we argue is due to an overfitting bias in previous studies.
We also collected liver tissue RNA from the participants
and profiled these samples on a comprehensive gene
expression microarray. The RNA levels were used as a
large-scale set of quantitative traits to calibrate the relative
statistical power of the commercial arrays. Through this
dataset and simulations, we find that the SNP arrays
provide adequate power to detect quantitative trait loci
when the causal SNP’s minor allele frequency is greater
than 20%, but low power is less than 10%. Importantly, we
provide evidence that sample size has a greater impact on
the power of WGAS than SNP density or genetic coverage.

Calibrating the Performance of SNP Arrays
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represented on Ilmn300K and Ilmn550K are subsets of Ilmn650K,

and we computed their genetic coverage in a similar manner.
Sample overfitting. To determine whether there has been

sample overfitting in previous estimates, we compared genetic

coverage of the CEU individuals versus the Liver Study

individuals. A higher level of genetic coverage in the former is

evidence of overfitting. We made this comparison among Affx

HapMap SNPs, among Affx HapMap SNPs, and among all Affx

SNPs combined. Evidence for sample overfitting was present for

all three sets of SNPs. Finally, for both types of overfitting, we

stratified the AffxSNPs into MAF bins, and computed coverage for

each bin to investigate whether the overfitting bias is also a

function of MAF.

Statistical Power for Mapping Continuous Traits
The statistical power of the SNP array platforms for WGAS

were first estimated from simulation studies. First, we randomly

selected a SNP from Affx500K and used its genotype to simulate

trait value. Over the range of simulations, SNP genotypes from

both Affx HapMap SNPs and Affx NonHapMap SNPs were

utilized. We assumed the trait followed a Normal distribution

N(m,s2), where s2 was constantly set to 1 and m varied among

genotypes. We set (mAA, mAa, maa) = (20.5, 0, 0.5), (20.25, 0, 0.25),

or (21, 0, 1) to investigate a range of signal strengths. Second, we

conducted single-marker tests, which examined association

between each SNP and each simulated trait. We surveyed three

choices of a level (1025, 1026 and 1027) that are reasonable for

WGAS. Kruskal-Wallis and Spearman rank correlation tests were

employed because these non-parametric methods were robust to

the underlying genetic model and trait distribution, thereby

allowing our simulation to be useful for non-normal traits and non-

additive models. We defined a ‘‘true discovery’’ to be any

association detected within 200 kb of the causal SNP. We

calculated statistical power (defined as the probability of calling

any SNP within 200kb of the causal SNP significant) and the

average number of true discoveries (NTD) over the set of

simulated datasets. Two million simulation runs were conducted

for each parameter setting.

Statistical Power for Mapping Binary Traits
Again, we firstly simulated a binary phenotype using Affx

HapMap SNPs and Affx NonHapMap SNPs, respectively. The

genetic model was specified as disease prevalence = 25% and

relative risk = 3. Once the phenotypes were generated, we randomly

picked 75 cases and 75 controls from the 359 subjects to construct a

balanced case-control study. These simulation parameters were

chosen to ensure statistical power in a range easy to compare. Since

the sample size was relatively small, Fisher’s exact test was applied.

Two million simulation loops were run for each scenario.

Association Mapping of Expression Traits
Using the same procedure as above, single-marker association tests

were conducted to detect the expression quantitative trait loci (eQTL)

for each of the ,40,000 gene expression traits measured.

Furthermore, we repeated the tests on three permuted gene

expression datasets and calculated the false discovery rate (FDR).

In each permutation run, we first randomized the patient IDs in the

expression file, breaking any association between expression traits and

genotypes while leaving the respective correlation structures among

gene expression traits and SNP genotypes intact. Second, we repeated

the association tests for every expression trait and genotype pair,

resulting a set of null statistics for each permutation. A standard FDR

estimator was then applied to the resulting association statistics, as

previously carried out on observed and permutation null statistics

[12]. Because the entire set of null statistics were used to calculate the

q-value for each test, we were able to use only three permutations and

still retain stable significance results.

Results

Genetic Coverage
Based on the Liver Study subjects, we obtained new estimates of

genetic coverage for the Illumina and Affymetrix SNP genotyping

arrays (Materials and Methods), which are robust to overfitting.

Evidence of SNP overfitting in previous estimates can be seen in

Figure 1 by comparing the genetic coverage of Affx HapMap

SNPs to that of Affx NonHapMap SNPs based on the genotypes

from the Ilmn650K array. (Materials and Methods). As can be

seen, SNP overfitting is present in genetic coverage estimates

derived from both HapMap CEU individuals and Liver Study

individuals. Interestingly, the magnitude of SNP overfitting was

similar when repeating the analysis on the Ilmn550K and

Ilmn300K arrays (Table S1).

By comparing estimates of genetic coverage derived from

HapMap CEU to those from Liver Study subjects (Materials and

Methods), we also found evidence for the existence of sample

overfitting (Figure 1 and Table S1). For example, the Ilmn300K

platform’s genetic coverage was reported to be 9% higher in CEU

individuals than when we make the sample calculation on the Liver

Study subjects. In contrast, the magnitude of sample overfitting was

smaller in the Ilmn550K and Ilmn650K sets. This phenomenon

could be explained by the degree of redundancy in the tag SNP sets.

The first genome-wide tag SNP array, Ilmn300K, harbors a ‘‘lean’’

set of 317K tag SNPs optimized only in CEU. As a drawback, these

317K SNPs contained less redundancy and exhibited less

transferability. The Ilmn550K and Ilmn650K were developed on

multiple ethnic groups [9], and their tag SNP sets had higher degree

of redundancy, resulting in better transferability.

Figure 1. Plot of genetic coverage of Affx HapMap SNPs and
Affx NonHapMap SNPs were calculated among HapMap CEU
subjects and liver study subjects, respectively. The effect of SNP
overfitting and sample overfitting can be seen.
doi:10.1371/journal.pgen.1000109.g001
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By comparing genetic coverage of the Affx HapMap SNPs in

CEU to Affx NonHapMap SNPs in Liver Study subjects, we

measured the combined size of the two types of overfitting to be

,18%. Furthermore, we formed weighted estimates by taking the

weighted average of the coverage on HapMap SNPs (w = 2.2/7.5)

and that on NonHapMap SNPs (w = 5.3/7.5). Among the Liver

Study Caucasian subjects, the Ilmn300K and Ilmn650K’s

weighted genetic coverage was 64% and 76% at r2
cutoff = 0.8,

which is lower than previous reports (79% and 90%, respectively;

http://www.cidr.jhmi.edu/human_gwa.html). Furthermore, we

found that the tagSNP arrays cover low MAF SNPs (e.g.

MAF,15%) worse than the high MAF ones (e.g., MAF$15%),

and importantly, the overfitting bias appears to be more severe for

the low MAF range (Figure S1 and Table S1).

Statistical Power
A WGAS requires genotyping thousands of subjects, which is

expensive at current genotyping costs [13,14]. To conserve

resources, many WGAS are adopting a two-stage design in which

a small sample of subjects (e.g., a few hundred) are genotyped on

all markers in stage 1, and a proportion of these markers are

genotyped on a much larger sample in stage 2 [13,14]. Studies

have shown that this strategy may preserve much of the power of

the corresponding one-stage design and minimizes the genotyping

cost [14]. In our study, N = 359 is a reasonable sample size for the

stage 1 WGAS [14–16]. The SNP arrays showed reasonable

power to detect SNPs associated with quantitative traits when the

SNR .0.5, but limited power when SNR #0.25 (Table S2).

In simulating SNPs causal for a quantitative trait, we assumed

mAA,mAa,maa, so that the Spearman rank correlation test gave

higher statistical power and larger NTD than the Kruskal-Wallis

rank-sum test. In a separate set of simulations (Figure S2), we

found the Kruskal-Wallis test was conservative in the small p-value

range (e.g. p-value,0.05). Focusing on SNR = 0.5, we found that

the statistical power was highly related to the causal SNP’s MAF

(Figure 2). For example, when MAF$20% the Ilmn650K had

over 50% power to detect associations with quantitative traits

(Spearman rank correlation test). When the MAF #10%, little

power could be achieved (Figure 2).

Figure 2. On the simulated trait values, the statistical power and NTD (number of true discoveries) were estimated for the
Affymetrix 500K and Illumina tag SNP arrays.
doi:10.1371/journal.pgen.1000109.g002
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Not surprisingly, we observed the Affx500K to exhibit less

power than the Ilmn650K, which could be explained the fact that

the Affx500K platform contains fewer SNPs and/or that the

Ilmn650K platform has higher genetic coverage. Because the

Ilmn550K and Ilmn650K platforms had similar genetic coverage

in Caucasians, they showed nearly the same statistical power

(Figures 2 and 3). In contrast, the Ilmn650K platform offered a

larger number of true discoveries (NTD), indicating more

significant SNPs were detected around the true causal SNP.

Interestingly, the power of Illumina arrays differed when

identifying associations with quantitative traits simulated using

Affx HapMap SNPs and Affx NonHapMap SNPs which was

essentially the overfitting effect. For example, using Kruskal-Wallis

test and a p-value threshold of a= 1026, Ilmn550K showed 37%

power in detecting NonHapMap causal SNPs and 43% power in

detecting HapMap causal SNPs (Table S2B), which translated into

a difference of 6% in power, likely due to an overfitting bias. We

also surveyed other genetic models as well as significance

thresholds, and observed considerable SNP overfitting effects

(Table S2A, S2C, and S2D).

In a WGAS, a large number of hypothesis tests are conducted,

so that statistical significance measures such as the FDR need to be

carefully assessed. In our simulation, the true causal SNPs were

known. When significant associations were detected .1Mb away

from the causal SNP or on a different chromosome, we regarded

them as false discoveries. The number of false discoveries (NFD)

was proportional to the number of SNPs employed in the WGAS,

with NFDAffx500K,NFDIlmn300K,NFDIlmn550K,NFDIlmn650K.

Comparing Table S2B and Table S3, we found the FDR was in

a manageable range. For example, at a P,1025, Ilmn550K gave

an average of 2.51 NFD and 1.69 NTD using the Kruskal-Wallis

test. At a P,1026, 0.20 NFD and 1.06 NTD were observed; and

at a more stringent P,1027, the FDR was even smaller,

suggesting 1026 or 1027 as an appropriate significant cutoff in

WGAS or initial screening (Figure S3).

Finally, we conducted association tests on actual traits, namely

RNA expression levels or ‘‘expression traits.’’ It has been shown

that comparing the ND from many related traits, all conditional

on the same set of individuals (i.e., genetic backgrounds), can lead

to meaningful empirical power comparisons, where simple models

often used for simulations do not have to be assumed [10].

Specifically, by considering the relative ND among different

approaches at the same error rate, we are able to estimate the

relative levels of power, without having to specifically identify

which among the discoveries are true discoveries [17].

The number of discoveries (ND) obtained on both observed

data and permuted data followed the same pattern: Ilmn650-

K.Ilmn550K.Ilmn300K.Affx500K. Because the true and false

discoveries were no longer distinguishable, we could not directly

infer the SNP arrays’ statistical power using ND. Instead, we

compared the relative power using ND conditioning on FDR

(Figures 4 and S3). The Ilmn650K slightly outperformed the

Ilmn550K, indicating the ‘‘100K YRI SNPs’’ on Ilmn650K [9]

benefited Caucasian studies although they were selected on

HapMap YRI. Compared to Affx500K, Ilmn650K discovered

15% more genes that were associated with at least one SNP

(FDR = 10%).

After filtering SNPs based on MAF, call rate, and HWE p-

values (Materials and Methods), a similar number of SNPs on

Affx500K and Ilmn300K (286K and 296K SNPs, respectively)

were included in the analysis, which provided an opportunity for a

head-to-head comparison between random SNPs and tag SNPs on

these expression traits. Unexpectedly, the Affx500K outperformed

Ilmn300K in term of ND (Figure S4, upper panels), indicating

random SNPs detected more significant associations than the same

number of tag SNPs at the same FDR levels. However, the

Ilmn300K captured more quantitative traits (Figures 4 and S4,

lower panels). One explanation could be that the Affx500K SNPs,

clustered on Nsp and Sty restriction fragments rather than

strategically spread on human genome, tended to capture certain

signals repeatedly but missed other associations.

As a novel feature of our study, we were also able to investigate

the power of combining Affx500K and Ilmn650K arrays for a

single analysis (Figure 4). Since the location of each expressions

trait is known, this allows us to focus on the cis-associations. In

brief, for a given expression trait, only SNPs within 61 Mb of the

Figure 3. Weighted estimates for statistical power by taking the weighted average of the power on HapMap causal SNPs
(weight = 2.2/7.5) and that on NonHapMap causal SNPs (weight = 5.3/7.5). (A) Kruskal-Wallis tests. (B) Spearman rank correlation tests.
Further, we quantified the power of ‘‘direct genotyping,’’ where association tests were conducted on causal SNPs. This represents an upper bound on
statistical power in WGAS.
doi:10.1371/journal.pgen.1000109.g003
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corresponding gene are tested. By taking these steps, the number

of tests is substantially reduced and the statistical power increased,

illustrated in more cis-association discoveries in Figure 4 right

panel comparing to the left panel. The numbers of cis-association

genes also reflect the relative power. Consistent with Figure S4, the

Illumina tag SNP arrays are more powerful than Affx500K. For

example, using Affx500K as the reference, 650K panels’ relative

power is 110%, in detecting cis-association. Surprisingly, Affx500-

K+Ilmn650K (relative power = 115%) only slightly outperforms

Ilmn650K, indicating the limited return of adding additional SNPs

on top of Ilmn650K.

Sample Size Versus Genetic Coverage
We collected 68 additional liver samples from Caucasian

donors. We performed RNA expression profiling as before and

obtained SNP genotypes using the Affy500K array only. We then

we pooled the sample (re-normalizing for gender, age, and medical

center, and batch) and reran the association tests on the Affx500K

SNPs. Surprisingly, this increase in sample size (19%) results in

31% and 33% more cis-association discoveries (at 5% and 10%

FDR, respectively), implying a respective 31% and 33% boost in

relative power. In contrast, conditioning on the same sample size,

Ilmn650K yields about 10% more cis-associations than Affy500K.

This is potentially an important observation that sample size has a

more profound impact on statistical power than the difference in

genetic coverage among current SNP arrays. Since arrays vary

greatly in price, and argument has been raised whether to choose

high genetic coverage arrays or cheaper ones and run more

subjects.

Discussion

Whole-genome association studies using high-density SNP

arrays are viewed as a powerful approach to elucidating the

genetic bases of common human diseases. We provided a novel

investigation of two key properties for determining the perfor-

mance of SNP array genotyping platforms in WGAS: genetic

coverage and statistical power. The availability of (i) 90K

genotyped SNPs which were identified independently from the

HapMap, (ii) a new, independently sampled cohort of subjects,

and (iii) thousands of related ‘‘expression traits’’ measured

simultaneously on these subjects, yielded the opportunity to

provide new insights into genetic coverage and statistical power,

and make comparisons to previous results.

Two strategies are usually taken in selecting SNPs and

constructing genome wide arrays: random SNPs and tag SNPs.

These strategies might result in different levels of performance in

terms of genetic coverage and statistical power [4]. Regardless of

the selection algorithms used, the performance of tag SNPs is most

accurately assessed by using a validation dataset independent of

the training set [18]. In this article, we systematically investigated

two sources of overfitting (SNP overfitting and sample overfitting,

respectively) and derived new genetic coverage estimates robust to

these two types of overfitting. As a caveat, Affymetrix developed

Affx500K array by screening the dbSNP database, which tends to

document frequent SNPs rather than rare SNPs. As the result, the

Affx SNPs have higher MAF than the totality of SNPs in the

human genome, and our weighted genetic coverage estimates may

be somewhat upwardly biased. However, this bias is an issue

distinct from bias due to overfitting.

Since there are a limited number of common SNPs in the

human genome, tag SNPs selected from the complete set (e.g., the

7.5 million common SNPs) would be robust to SNP overfitting in

assessing genetic coverage. At the current stage, tag SNPs are

usually selected from an incomplete initial SNP set (i.e., HapMap

SNPs), and the remaining SNPs (i.e., 5.3M NonHapMap SNPs)

would be ‘‘hidden’’ from the training procedure. Previous

simulation studies showed that 26% of the common ENCODE

SNPs in CEU had no good proxies (r2$0.8) among the ‘‘pseudo’’

HapMap I SNPs [19]. This implies that these 26% SNPs would

have an extremely low likelihood of being captured by tag SNPs

(e.g. Ilmn300K) selected using HapMap I. Using empirical

Figure 4. Tests of association on liver gene expression traits. (A) Number of gene expression traits that were associated with SNPs on
Affymetrix and Illumina microarrays at fixed FDR levels. (B) We restricted the association tests to SNPs within 1 Mb range of the gene and present the
number of cis-associating gene expression traits at a given FDR level.
doi:10.1371/journal.pgen.1000109.g004

Calibrating the Performance of SNP Arrays
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datasets, researches studied the SNP overfitting problem in a

diverse set of ethnic groups around the world [3,5,20,21].

However, these studies faced the limitation of small chromosomal

regions and they didn’t consider overfitting in the context of

statistical power.

Our study employed 359 individuals, which provided adequate

levels statistical power for moderate genetic effects (e.g.,

SNR = 0.5). Certainly, larger sample size is necessary to detect

weaker effects (e.g., SNR = 0.25). Illumina tag SNP arrays were

designed to capture common HapMap SNPs. Therefore, most of

these tag SNPs have MAF $5%. In contrast, Affx500K harbors

over 100K rare SNPs (MAF #5%). Because we used common

SNPs to simulate quantitative traits, the Affx500K rare SNPs

provided little statistical power and were therefore excluded from

the analysis. Rare SNPs might be useful when the disease-causing

polymorphism was also rare. However, Figure 2 showed WGAS

may have limited power in such scenarios.

Our SNP filtering resulted in similar number of SNPs on

Affx500K and Ilmn300K, which enabled a fair comparison

between random SNPs and tag SNPs. We found random SNPs

actually achieved larger ND (Figure S4), but many of which were

redundant. In another words, Affx500K tended to capture the

same signal repeatedly. In contrast, more traits were in association

with at least one SNP on Ilmn300K, indicating tag SNPs were

more efficient in WGAS. Such a finding was consistent to our

simulation study, shown Figures 2 and 3, where Ilmn300K

outperformed Affx500K in terms of statistical power.

Affymetrix and Illumina recently released 900K and 1M SNP

arrays, respectively. These new products will further enhance

WGAS. In evaluating their performance, we recommend utilizing

independent test sets as we have done here. Given that we did not

utilize these new arrays, we were not able to calibrate the genetic

coverage and statistical power for the million-SNP arrays.

However, there are a number of reasons why a major performance

leap may not be expected. First, it has already been reported that

the gain in coverage achieved by increasing the number of tag

SNPs follows a pattern of diminishing returns [4,19]. Second, the

current tag SNP selection is still limited to occur within the

HapMap dataset. As shown in Figure 1, this strategy results in an

approximately 12% genetic coverage loss when applying to

NonHapMap SNPs. In the ENCODE regions, ,10% of the

common SNPs had no good proxies (r2$0.8) among the simulated

HapMap II datasets, and those SNPs could only be adequately

captured by searching beyond the HapMap data. In another

words, the HapMap-derived tag SNP struggles to reach the 90%

genetic coverage level. Through simulations, we were able to

directly test the causal SNP, allowing us to calibrate the upper

bound of a SNP array’s performance in WGAS. At SNR = 0.5

(Figure 3), ‘‘direct genotyping’’ provided a gain of 8% more power

than Ilmn650K, indicating current arrays are already capable of

extracting a substantial level of genetic information. ‘‘Direct

genotyping’’ provided a greater increase in power at SNR = 1

(Figure S5), but no extra power at SNR = 0.25.

It is important to continue to systematically quantify the trade-

offs among genetic coverage, genotyping cost, and statistical power

for WGAS. Based on our results, some conclusions are possible

(Figure 5). For example, according to our results a study employing

N = 300 subjects and the Affy500K platform offers higher power

than a study employs N = 250 subjects and the Ilmn650K

platform. This 20% increase in sample size (N = 300 vs.

N = 250) provides more power than the 90% increase in the

number of SNPs genotyped (286K SNPs vs. 545K SNPs). In

scenarios where funding becomes the constraining factor, our

results suggest that genotyping larger sample size with cheaper

SNP arrays might achieve better statistical power. On the other

hand, if the constraining factor is the number of subjects, then it

appears that SNP arrays offering the largest genetic coverage

should be employed.

Supporting Information

Figure S1 We stratified Affx SNPs into MAF bins and computed

the Illumina tag SNP array genetic coverage on HapMap CEU

and Liver study subjects.

Figure 5. The number of significant cis-associations among the liver gene expression traits at FDR = % at varying sample sizes. The
relative number of significant associations is an empirical estimate of the relative levels of power of the different platforms at different sample sizes.
doi:10.1371/journal.pgen.1000109.g005
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Found at: doi:10.1371/journal.pgen.1000109.s001 (28.44 MB

TIF)

Figure S2 The null distribution of p-values for the Kruskal-

Wallis test and Spearman Rank Correlation test. The p-value of

Spearman test (p.spearman) follows the uniform distribution under

the null, whereas the p-values of the Kruskal-Wallis test shows a

lower density in the [0,0.05] range, indicating this test is

conservative.

Found at: doi:10.1371/journal.pgen.1000109.s002 (0.33 MB TIF)

Figure S3 Using the expression traits, we surveyed a wide range

of p-value cutoffs and the corresponding FDR values for simulated

WGAS.

Found at: doi:10.1371/journal.pgen.1000109.s003 (1.23 MB TIF)

Figure S4 (A) and (B): the number of discovery (ND) observed in

the expressiongenotype association screening. Please note that one

expression trait sometimes showed significant association with

multiple mutually proximal SNPs, because these SNPs were in

strong LD. (C) and (D): the number of expression traits that

showed at least one significant association with SNP(s).

Found at: doi:10.1371/journal.pgen.1000109.s004 (1.00 MB TIF)

Figure S5 The statistical power of the Affymetrix array, Illumina

arrays, and ‘‘direct genotyping.’’ (A) SNR = 1/4 and Kruskal-

Wallis test; (B) SNR = 1/4 and Spearman rank correlation test; (C)

SNR = 1 and Kruskal-Wallis test; (D) SNR = 1 and Spearman

rank correlation test.

Found at: doi:10.1371/journal.pgen.1000109.s005 (0.63 MB TIF)

Table S1 Genetic Coverage of tagSNP Arrays.

Found at: doi:10.1371/journal.pgen.1000109.s006 (0.11 MB

DOC)

Table S2 Power and Number of Discoveries (ND) of Whole

Genome SNP Genotyping Products.

Found at: doi:10.1371/journal.pgen.1000109.s007 (0.21 MB

DOC)

Table S3 Number of False Discoveries in Mapping Quantitative

Trait.

Found at: doi:10.1371/journal.pgen.1000109.s008 (0.04 MB

DOC)

Text S1 Supplementary Materials.

Found at: doi:10.1371/journal.pgen.1000109.s009 (0.03 MB

DOC)
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