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Summary. The false discovery rate (FDR) is a multiple hypothesis testing quantity that describes
the expected proportion of false positive results among all rejected null hypotheses. Benjamini
and Hochberg introduced this quantity and proved that a particular step-up p-value method con-
trols the FDR. Storey introduced a point estimate of the FDR for fixed significance regions. The
former approach conservatively controls the FDR at a fixed predetermined level, and the latter
provides a conservatively biased estimate of the FDR for a fixed predetermined significance
region. In this work, we show in both finite sample and asymptotic settings that the goals of the
two approaches are essentially equivalent. In particular, the FDR point estimates can be used
to define valid FDR controlling procedures. In the asymptotic setting, we also show that the point
estimates can be used to estimate the FDR conservatively over all significance regions simul-
taneously, which is equivalent to controlling the FDR at all levels simultaneously. The main tool
that we use is to translate existing FDR methods into procedures involving empirical processes.
This simplifies finite sample proofs, provides a framework for asymptotic results and proves that
these procedures are valid even under certain forms of dependence.

Keywords: Multiple comparisons; Positive false discovery rate; P -values; Q-values;
Simultaneous inference

1. Introduction

Classically, the goal of multiple hypothesis testing has been to guard against making one or
more type I errors among a family of hypothesis tests. In an innovative paper, Benjamini and
Hochberg (1995) introduced a new multiple-hypothesis testing error measure with a different
goal in mind—to control the proportion of type I errors among all rejected null hypotheses.
This is useful in exploratory analyses, where we are more concerned with having mostly true
findings among several, rather than guarding against one or more false positive results.
Table 1 describes the various outcomes when applying some significance rule to perform m

hypothesis tests. In this work, we assume that them hypothesis tests have corresponding p-values
p1, . . . ,pm. The significance rule that we consider rejects null hypotheses with corresponding
p-values that are less than or equal to some threshold, which can be fixed or data dependent.
We are particularly interested in V , the number of type I errors (false positive results), and
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Table 1. Possible outcomes from m hypothesis tests
based on a significance rule

Accept null Reject null Total
hypothesis hypothesis

Null true U V m0
Alternative true T S m1

W R m

R, the total number of rejected null hypotheses. The familywise error rate (FWER) is defined
to be

FWER = Pr.V � 1/,

and the false discovery rate (FDR) is defined to be (Benjamini and Hochberg, 1995)

FDR = E

[
V

R ∨ 1

]
= E

[
V

R

∣∣∣∣R > 0
]
Pr.R > 0/, .1/

where R ∨ 1 = max.R, 1/. The effect of ‘R ∨ 1’ in the denominator of the first expectation is
to set V=R = 0 when R = 0. As explained in Benjamini and Hochberg (1995), the FDR offers
a less strict multiple-testing criterion than the FWER, and the FDR may be more appropriate
for some applications.
Two approaches to providing conservative FDR procedures are the following. One is to fix

the acceptable FDR level beforehand, and to find a data-dependent thresholding rule so that the
FDR of this rule is less than or equal to the prechosen level. This is the approach that was taken
by Benjamini and Hochberg (1995), for example. Another is to fix the thresholding rule, and to
form an estimate of the FDR whose expectation is greater than or equal to the true FDR over
that significance region. This is the approach that was taken by Storey (2002), for example. In
either case, we want to be conservative regardless of the value of m0, which is usually unknown.
If this holds then ‘strong control’ is provided. ‘Weak control’ is provided when the procedure is
conservative only when m0 = m; in general this is not of interest in the FDR case (Benjamini
and Hochberg, 1995). Throughout this paper, ‘control’ implicitly means strong control unless
explicitly stated otherwise.
Benjamini and Hochberg (1995) proved by induction that the following procedure (referred

to here as the BH procedure) controls the FDR at level α when the p-values following the null
distribution are independent and uniformly distributed.

Step 1: let p.1/ � . . . � p.m/ be the ordered, observed p-values.
Step 2: calculate k̂ = max{1 � k � m : p.k/ � α k=m}.
Step 3: if k̂ exists, then reject null hypotheses corresponding to p.1/ � . . . � p.k̂/. Otherwise,
reject nothing.

Other sequential p-value FDR controlling methods have been suggested (e.g. Benjamini and
Liu (1999)). The BH procedure was originally introduced by Simes (1986) to control weakly the
FWER when all p-values are independent, but it provides strong control of the FDR as well.
Let FDR.t/ denote the FDR when rejecting all null hypotheses with pi � t for i = 1, . . . ,m.

For t ∈ [0, 1], we define the following empirical processes based on the notation in Table 1:
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V.t/ = #{null pi : pi � t},
S.t/ = #{alternative pi : pi � t},

R.t/ = V.t/ + S.t/ = #{pi : pi � t}:

 .2/

Additional processes can be defined for the other variables in Table 1. In terms of these empirical
processes, we have

FDR.t/ = E

[
V.t/

R.t/ ∨ 1

]
:

Forfixed t, Storey (2002) provideda familyof conservativelybiasedpoint estimates ofFDR.t/.
In this paper we denote these estimates by F̂DRλ.t/, where λ ∈ [0, 1/ is a tuning parameter that
is explained later. The BH procedure induces a data-dependent threshold p.k̂/ rather than some
fixed t. In Section 2 we show that the BH procedure is simply a random thresholding procedure
which is found by choosing t so that the natural empirical estimator t={R.t/=m} of FDR.t/

(which in fact is the special case F̂DRλ=0.t/) is bounded by α. In theorem 2, we provide an alter-
native proof of strong control of the BH procedure with a simple martingale argument applied
to the empirical processes V.t/ and R.t/. Theorem 3 shows that the analogous thresholding
procedure using the estimates F̂DRλ.t/ for general λ ∈ [0, 1/ maintains strong control of the
FDR at a predetermined level. Thus, we essentially provide a new family of FDR controlling
procedures and show that the goals of the two approaches can be met with this one family of
estimates. Another motivation for studying this general class of FDR controlling procedures is
that F̂DRλ=0.t/ is the most conservatively biased estimate of all λ ∈ [0, 1/ (see Storey (2002)
and the proof of theorem 1).
Our main results in the finite sample setting, theorems 2 and 3, formulate these procedures

in terms of empirical processes. Besides allowing simple proofs of the finite sample results, the
empirical process approach sets the stage for our asymptotic results in theorems 4 and 5, where
we provide conditions under which asymptotic control of the FDR can be achieved. The proofs
are straightforward, relying only on convergence of the underlying empirical processes, and not
large deviation inequalities as in Genovese and Wasserman (2002a). This also allows for the
presence of certain forms of dependence.
In the asymptotic setting, we provide a conservative estimate of the error rate over all signifi-

cance regions simultaneously, which is essentially equivalent to controlling the FDR at all levels
simultaneously. In theorem 6 we show that the estimates of FDR.t/ defined in Storey (2002)
provide an asymptotic form of simultaneous control if the corresponding empirical processes
converge. Thus, asymptotically, the goals of the two approaches are equivalent and there is no
need to distinguish between them. A slightly different view of this is to assign a simultaneously
conservative multiple-testing measure of significance to each test. In theorem 7, we show the
simultaneous conservative consistency of Storey’s (2002) q-value estimates, which assign mea-
sures of significance to each test in terms of FDRs.
The point of view that was taken in Storey (2002) allows an additional error measure to be

considered, the positive false discovery rate pFDR, whose motivation can be found in Storey
(2001):

pFDR = E

[
V

R

∣∣∣∣R > 0
]
:

In an asymptotic setting, pFDR and the FDR are equivalent, and consequently any asymptotic
results about the FDR can essentially be directly translated into results for pFDR.
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Other asymptotic properties of the FDR have previously been studied (Genovese and Wass-
erman, 2002a,b; Finner and Roters, 2001, 2002). We are not the first to study FDR procedures
when the p-values are dependent (Yekutieli andBenjamini, 1999; Benjamini andYekutieli, 2001;
Storey and Tibshirani, 2001), but our empirical process approach puts the asymptotic and
dependence issues into one, coherent, framework. It should be mentioned, though, that our
framework does not enable us to prove finite sample results in the dependence setting without
further assumptions on the underlying distributions, e.g. the positive regression dependence
property that is discussed in Benjamini and Yekutieli (2001).
It has previously been pointed out that the BH procedure can be made less conservative by

incorporating an estimate of the proportion of true null hypotheses (Benjamini and Hochberg,
1995, 2000; Storey, 2002). Benjamini and Hochberg (2000) proposed a data-adaptive proce-
dure for estimating this proportion and modifying the BH procedure. However, there has been
no proof that this procedure provides strong control of the FDR. Extending Storey’s (2002)
more tractable method, we can prove strong control of our proposed procedure, which also
incorporates an estimate of the proportion of true null hypotheses.
The lay-out of the paper is as follows. In Section 2 we formally describe our proposed pro-

cedures and main results. Some numerical results are presented in Section 3. Section 4 outlines
proofs of the finite sample results, and Section 5 of the asymptotic results. Finally, Section 6
provides a numerical method for automatically picking a tuning parameter used in the proce-
dures proposed.

2. Procedures proposed and main results

In this section we formally describe the procedures proposed and main results of this work. We
first review thepoint estimate approach for afixed significance region; thenwe introduce anFDR
controlling procedure in terms of our FDR point estimate, and we describe the simultaneous
conservative consistency of the estimates.

2.1. F̂DRλ(t) is a conservative point estimate of FDR(t)
Recall that, for a non-random significance threshold t, FDR.t/ denotes the FDRwhen rejecting
all null hypotheses with p-values less than or equal to t. The estimate of FDR.t/ proposed in
Storey (2002) is

F̂DRλ.t/ = π̂0.λ/t

{R.t/ ∨ 1}=m
: .3/

The term π̂0.λ/ is an estimate ofπ0 ≡ m0=m, the proportion of true null hypotheses. This estimate
depends on the tuning parameter λ and is defined as

π̂0.λ/ = W.λ/

.1 − λ/m
, .4/

where W.λ/ = m − R.λ/ (see Table 1). The reasoning behind π̂0.λ/ is the following. As long as
each test has a reasonable power, then most of the p-values near 1 should be null. There-
fore, for a well-chosen λ, we expect about π0.1 − λ/ of the p-values to lie in the interval
.λ, 1], because the null p-values are uniformly distributed. Therefore, W.λ/=m ≈ π0.1 − λ/,
where E[π̂0.λ/] � π0 when the p-values corresponding to the true null hypotheses are uni-
formly distributed (or stochastically greater). There is an inherent bias–variance trade-off in
the choice of λ. In most cases, when λ grows smaller, the bias of π̂0.λ/ grows larger, but the
variance becomes smaller. Therefore, λ can be chosen to try to balance this trade-off. The
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interested reader is referred to Storey (2002) for a detailed motivation of this and related
estimates.
Our first result is an extension of the conservative bias result of Storey (2002). The only

assumption that we make is that the p-values corresponding to the true null hypotheses are
independent and uniformly distributed, whereas Storey (2002) assumed an independent and
identically distributed mixture model of the p-values and stochastic ordering. Our assump-
tions are the same as those used to show strong control of the BH procedure in Benjamini and
Hochberg (1995).

Theorem 1. Suppose that the p-values corresponding to the true null hypotheses are indepen-
dent and uniformly distributed. Then, for fixed λ ∈ [0, 1/, E[F̂DRλ.t/] � FDR.t/.

2.2. Using F̂DRλ(t) to control the false discovery rate strongly
We now use F̂DRλ.t/ to derive a new class of FDR controlling procedures, of which the BH
procedure is a special case. Since F̂DRλ.t/ is a conservative point estimate of FDR.t/, it is
tempting to try to use F̂DRλ.t/ to provide strong control, i.e., if we want to control the FDR
at level α, we take the largest t such that F̂DRλ.t/ � α as the significance threshold. We show
that this heuristic procedure controls the FDR.
Sequential p-value methods estimate an appropriate significance threshold based on the

p-values and the prechosen level α. Thus, we define the following function that chooses the
cut point based on some function F defined on [0, 1]:

tα.F/ = sup{0 � t � 1 : F.t/ � α}: .5/

In words, tα.F/ finds the largest t such that F.t/ � α. We shall be particularly concerned with
the thresholding rule tα.F̂DRλ/ = sup{0 � t � 1 : F̂DRλ.t/ � α}. A slightly modified version
is considered for finite sample results. Since tα.F̂DRλ/ is a random variable, we write for ease
of notation

FDR{tα.F̂DRλ/} ∆= E

[
V{tα.F̂DRλ/}

R{tα.F̂DRλ/} ∨ 1

]
:

The thresholding rule tα.F̂DRλ/ has a useful interpretation in the context of the BH proce-
dure. Under the assumption of independent and uniformly distributed null p-values, the BH
procedure controls the FDR at exactly level π0α (see Finner and Roters (2001), Benjamini and
Yekutieli (2001) and theorem 2 below). Thus, it follows that, if m is replaced with π0m in the
BH procedure, then the FDR is controlled exactly at level α. This eliminates the conservative
bias of the BH procedure and therefore increases the average proportion of false null hypotheses
that are rejected at each α (which could be stated as an increase in the overall ‘average power’).
A strategy to increase the power is then to replace m in the BH procedure with our estimate
π̂0.λ/m. This makes the procedure more accurate in the sense that the true level of FDR con-
trol is asymptotically closer to α than the BH procedure (theorem 4). The thresholding rule
tα.F̂DRλ/ operationally makes this exact change to the BH procedure. Specifically, consider
the following two lemmas.

Lemma 1.The p-value step-up method tα.F̂DRλ=0/ is equivalent to the BH procedure.

Proof. Noting that π̂0.λ = 0/ = 1, this follows by the proof of the next proposition. ✷
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Lemma 2. In general, the p-value step-upmethod tα.F̂DRλ/ is equivalent to the BHprocedure
with m replaced by π̂0.λ/m.

Proof. Wemust show that p.k̂λ/ � tα.F̂DRλ/ < p.k̂λ+1/ where k̂λ is the k̂ in the BH procedure
with m replaced by π̂0.λ/m. Ignoring the cases where R.t/ = 0, in which case both procedures
reject no p-values, the inequalities follow immediately once it is noted that the BH procedure
for selecting k̂λ is simply k̂λ = max{k : F̂DRλ.p.k// � α}. ✷

For the finite sample case with independent null p-values, we propose a new FDR controlling
step-up method with two minor modifications to F̂DRλ. If λ > 0, we want to guarantee that
π̂0.λ/ > 0; recall that π̂0.λ = 0/ = 1. Thus, for λ > 0 we replace π̂0.λ/ in F̂DRλ with

π̂Å
0 .λ/ = W.λ/ + 1

.1 − λ/m
:

We must also limit the significance threshold to the region [0,λ]. Therefore, the estimate of
FDR.t/ that we use for the finite sample case is

F̂DRÅ
λ.t/ =


π̂Å
0 .λ/t

{R.t/ ∨ 1}=m
, if t � λ,

1, if t > λ.

.6/

These modifications allow us to prove in the finite sample case that the tα.F̂DRÅ
λ/ procedure

controls the FDR. This last modification has little effect on the procedure, as explained later
in this section. Both modifications are unnecessary to prove asymptotic control, as is shown in
theorem 4. We summarize the procedure as follows.

Step 1: let α be the prechosen level at which to control the FDR.
Step 2: for any fixed significance region [0, t], estimate FDR.t/ by either F̂DRλ.t/ given in
equation (3) or F̂DRÅ

λ.t/ given in equation (6).
Step 3: for small m where the null p-values are independent, reject all null hypotheses cor-
responding to pi � tα.F̂DRÅ

λ/ for λ > 0, and pi � tα.F̂DRλ=0/ for λ = 0.
Step 4: for large m where the p-values meet the ‘weak dependence’ conditions of theorem 4,
reject all null hypotheses corresponding to pi � tα.F̂DRλ/.

The following two results concerning the finite sample properties of our proposed procedure
are proven in Section 4. Theorem 2 has been shown before (Benjamini andHochberg, 1995; Ben-
jamini andYekutieli, 2001), but our new proof usesmartingalemethods. The proof of theorem 2
easily leads to a proof of theorem 3.

Theorem 2 (Benjamini and Hochberg, 1995). If the p-values corresponding to the true null
hypotheses are independent, then

FDR{tα.F̂DRλ=0/} = π0α � α:

That is, the BH procedure controls the FDR exactly at level π0α and conservatively at level α.
Now consider the procedure with λ > 0.

Theorem 3. If the p-values corresponding to the true null hypotheses are independent, then,
for λ > 0,

FDR{tα.F̂DRÅ
λ/} � .1 − λπ0m/α � α:
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Therefore, the thresholding procedure tα.F̂DRÅ
λ/ strongly controls the FDR at level α.

Remark 1. Reasonably chosen λ will tend to be larger than tα.F̂DRÅ
λ/, so in practice

there should be little difference between tα.F̂DRÅ
λ/ and tα.F̂DRλ/. Consider that

FDR.t/ ≈ E[V.t/]=E[R.t/] � α

implies

t � .1 − π0/α

π0.1 − α/

since E[R.t/]=m � π0t + .1− π0/. Even with a small π0 = 0:75 and a large α = 0:20, it approxi-
mately follows that, if FDR.t/ � α, then t � 0:1. Therefore, using λ over the range λ = 0, 0:1,
0:2, . . . , 0:9, for example, implies that tα.F̂DRÅ

λ/ will essentially be equivalent to tα.F̂DRλ/.

FDRs are most useful in cases in which many hypotheses are tested. Moreover, in areas of
potential application (astrophysics, brain imaging and gene expression data), m is typically of
the order of several thousand. For large m, the assumption of independence can be replaced
with ‘weak dependence’ (defined below). For the remainder of this section, we consider the large
m case.
The asymptotic theorems require the almost sure pointwise convergence of the empirical

distributions of the null p-values and alternative p-values. Recall the empirical processes V.t/

and S.t/ that are defined in equation (2). Therefore, V.t/=m0 and S.t/=m1 are the empirical dis-
tribution functions of the null and alternative hypotheses respectively. We make the following
assumptions for our asymptotic results:

lim
m→∞

{V.t/

m0

}
= G0.t/ and lim

m→∞

{S.t/

m1

}
= G1.t/ almost surely for each t ∈ .0, 1], .7/

where G0 and G1 are continuous functions;

0 < G0.t/ � t for each t ∈ .0, 1]; .8/

lim
m→∞.m0=m/ ≡ π0 exists: .9/

The asymptotic results also hold if the assumption that G0 and G1 are continuous is replaced
by the pointwise convergence of left limits of the empirical distribution functions. We define
weak dependence to be any type of dependence where equation (7) can hold. Dependence in
finite blocks, ergodic dependence and certain mixing distributions are all candidates to meet the
weak dependence criterion.
Our first result shows that tα.F̂DRλ/ asymptotically provides strong control of the FDR

under the above assumptions. Define

F̂DR∞
λ .t/

∆=
{
1 − G0.λ/

1 − λ
π0 + 1 − G1.λ/

1 − λ
π1

}
G0.t/

/
{π0 G0.t/ + π1 G1.t/},

which is the pointwise limit of F̂DRλ.t/ under the assumptions of equations (7)–(9).

Theorem 4. Suppose that the convergence assumptions of equations (7)–(9) hold. If there is
a t ∈ .0, 1] such that F̂DR∞

λ .t/ < α, then
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lim sup
m→∞

[FDR{tα.F̂DRλ/}] � α:

A generalization of theorem 1 of Genovese and Wasserman (2002a) is possible by using
our approach. We specifically show that, if F̂DRλ converges almost surely pointwise to
some limit F̂DR∞

λ , then the random thresholding rule tα.F̂DRλ/ converges to the deterministic
rule tα.F̂DR∞

λ /.

Theorem 5. Suppose that the convergence assumptions of equations (7)–(9) hold. Then

lim
m→∞{tα.F̂DRλ/} = tα.F̂DR∞

λ /

almost surely if F̂DR∞
λ .·/ has a non-zero derivative at 0< tα.F̂DR∞

λ / < 1.

We now state a conservative consistency result of tα.F̂DRλ/, but we first define

FDR∞.t/
∆= π0 G0.t/

π0 G0.t/ + π1 G1.t/
,

which is the pointwise limit of FDR.t/ under the convergence assumptions of equations (7)–(9).

Corollary 1. Under the convergence assumptions of equations (7)–(9), we have that
limm→∞{tα.FDR/} = tα.FDR∞/ and limm→∞{tα.F̂DRλ/ − tα.FDR/} � 0 almost surely.

This final result shows that, for λ > 0, tα.F̂DRλ/ is asymptotically less conservative than
the BH procedure and therefore has greater asymptotic power.

Corollary 2. Suppose that the convergence assumptions of equations (7)–(9) hold, and
G0.t/ < G1.t/ for t ∈ .0, 1/. Then for any 0< λ < 1

lim
m→∞{tα.F̂DRλ=0/} < lim

m→∞{tα.F̂DRλ/} < lim
m→∞{tα.FDR/} almost surely:

Therefore, the procedure with 0< λ < 1 will asymptotically reject a higher proportion of false
null hypotheses for the same chosen α.

The proofs of corollaries 1 and 2 are straightforward, so we omit them. It is conceivable that,
under the assumptions of corollary 2, the least possible conservative thresholding procedure is
a limit of the family of tα.F̂DRλ/.
Under certain finite sample cases, there is positive probability that π̂0.λ/ > 1 for λ > 0, in

which case the procedure could reject fewer hypotheses than the BH procedure. However, as
can easily be seen in the proofs of the above results, if we replace π̂0.λ/ with min{π̂0.λ/, 1}, then
all the asymptotic results still hold. The procedure with this minor adjustment therefore always
calls at least as many p-values significant as the BH procedure. Also note that the automatic
method for choosing λ in Section 6 prevents any λ from being chosen where π̂0.λ/ > 1, so this
is a moot point in practice.

2.3. F̂DRλ(t) is simultaneously conservatively consistent for FDR(t)
As discussed in Section 1, it can be difficult to choose a significance threshold t or FDR con-
trolling level α before any data are seen, so it is useful to show that F̂DRλ.t/ �FDR.t/ for all t

simultaneously. Under the convergence assumptions of equations (7)–(9), we can show a version
of the above property in the following theorem.
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Theorem 6. Suppose that the convergence assumptions of equations (7)–(9) hold. Then, for
each δ > 0,

lim
m→∞ inf

t�δ
{F̂DRλ.t/ − FDR.t/} � 0 and lim

m→∞ inf
t�δ

{
F̂DRλ.t/ − V.t/

R.t/ ∨ 1

}
� 0

with probability 1.

This result holds not only for FDR.t/ but also for the realized proportion of false discoveries
V.t/={R.t/ ∨ 1}.
As will be seen from the proofs in Section 5, the above uniform convergence follows directly

from the arguments that are used in the proof of the Glivenko–Cantelli theorem, based on
the pointwise convergence of the corresponding empirical distribution functions to continuous
limits. Therefore, we have now shown that the point estimates can be used to estimate conser-
vatively the FDR over all significance regions simultaneously. This can be equivalently viewed
as controlling the FDR at all levels simultaneously, making the goals of the two approaches
asymptotically equivalent.

2.4. Simultaneous conservative consistency of the estimated q-values
In single-hypothesis testing, it is common to report the p-value as a measure of significance of
the test rather than whether or not the null hypothesis was rejected at a predetermined level. If
theorem 6 holds, then in theory we can avoid having to control the FDR at a fixed level and just
examine F̂DRλ.pi/ for i = 1, . . . ,m. To assign a measure of significance in terms of FDR to a
particular p-value pi, there are benefits to reporting the minimum FDR at which this p-value
can be called significant rather than F̂DRλ.pi/. This can be accomplished through the ‘q-value’
which is proposed in Storey (2001).
To be precise, suppose that

(a) Hi = 0 or Hi = 1 according to whether the ith null hypothesis is true or not,
(b) Hi ∼IID Bernoulli.π1/ so that Pr.Hi = 0/ = π0 and Pr.Hi = 1/ = π1 and
(c) Pi|Hi ∼IID .1 − Hi/G0 + HiG1.

Storey (2001) showed that

E

[
V.t/

R.t/

∣∣∣∣R.t/ > 0
]

= Pr.Hi = 0|Pi � t/,

where Pr.Hi = 0|Pi � t/ is the same for each i because of the independent and identically dis-
tributed data assumptions. The expectation on the left-hand side is called the positive false
discovery rate, pFDR. In the spirit of the definition of the p-value, Storey (2001) defined

q-value.pi/ = min
t�pi

{pFDR.t/},

i.e. the q-value of a statistic is theminimumpFDRatwhich that statistic can be called significant.
Under assumptions (a)–(c), it follows that

q-value.pi/ = min
t�pi

{Pr.Hi = 0|Pi � t/} ,

which is a Bayesian analogue of the p-value—or rather a ‘Bayesian posterior type I error rate’, a
concept suggested as early asMorton (1955). Further properties andmotivation can be found in
Storey (2001). Also, an application of the connection between Pr.Hi = 0|Pi � t/ and posterior
probabilities can be found in Efron et al. (2001).



196 J. D. Storey, J. E. Taylor and D. Siegmund

Storey (2002) estimated pFDR.t/ by p̂FDRλ.t/ = F̂DRλ.t/={1 − .1 − t/m} and estimated
q-value.pi/ by

q̂λ.pi/ = inf
t�pi

{p̂FDRλ.t/}: .10/

Motivated by the posterior probability estimate

P̂rλ.Hi = 0|Pi � t/ = π̂0.λ/t

R.t/=m
,

another clearly motivated estimate of the q-value is

q̂λ.pi/ = inf
t�pi

{P̂rλ.Hi = 0|Pi � t/}, .11/

which equals inf t�pi{F̂DRλ.t/}. Under the weak dependence criteria, we can prove that q̂λ.pi/

is asymptotically conservative, regardless of definition (10) or (11). Moreover, we can show that
q̂λ.·/ is simultaneously conservatively consistent over all arguments in the following sense.

Theorem 7. Suppose that the convergence assumptions of equations (7)–(9) hold. Then, for
each δ > 0,

lim
m→∞ inf

t�δ
{q̂λ.t/ − q-value.t/} � 0 almost surely:

Adjusted p-values, which are defined in terms of a particular step-up or step-down method,
are usually justified by strong control of the method at a single predetermined level α (Shaffer,
1995). Here, we have provided a more general result in the sense that we have shown control at
all α � δ, which is the condition that is necessary for adjusted p-values or estimated q-values to
be simultaneously conservative.

3. Numerical studies

We now present numerical results in both an independent p-value example and a dependent
p-value example. In each of these examples, the average power is defined to be the power aver-
aged over each true alternative hypothesis.

3.1. Independence example
We first present a simple numerical study to compare the average power of our proposed FDR
controlling procedurewith that of theBenjamini andHochberg (1995) procedure.Weperformed
m = 1000 one-sided hypothesis tests with null distribution N.0, 1/ and alternative distribution
N.2, 1/. We let m0 = 100, . . . , 900 and generated 1000 sets of 1000 normal random variables
for each m0-value. The BH procedure and proposed finite sample procedure tα.F̂DRÅ

λ/ were
performed at levels α = 0:01 and α = 0:05. For simplicity, we set λ = 0:5 for both cases in our
procedure. Fig. 1 shows the average power of the procedure proposed PP versus BH. It can be
seen that the increase in power that we achieve is greater the smaller m0 is. This makes sense
because the difference in our proposed procedure PP over BH is that it estimates π0, where
π0 = m0=m.
Secondly, we performed 3000 hypothesis tests of the above distributions with m0 = 2400. The

q̂λ.pi/ were calculated at each p-value pi, as well as the true q-value.pi/. These calculations are
displayed in Fig. 2. It can be seen that q̂λ.·/ � q-value.·/ over all p-values simultaneously, which
is exactly the result of theorem 7.
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Fig. 1. Average power versus m0 for the proposed procedure for small m ( ) and the Benjamini and
Hochberg (1995) procedure (- - - - - - -): (a) FDR controlled at level α D 0:01; (b) FDR controlled at level α D 0:05
(there is an increase in power under the proposed procedure in both (a) and (b))
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Fig. 2. q̂λ.�/ and q-value.�/ evaluated at each p-value for 3000 tests of N.0,1/ versus N.2,1/ with m0 D 2400
( , actual q-values; - - - - -, q-values)

3.2. Dependence example
Our second numerical study illustrates the asymptotic control of the FDR, even under a certain
form of dependence. The null statistics have N.0, 1/ marginal distributions with m0 = 2400 and
the alternative distributions have marginal distribution N.2, 1/ with m1 = 600. The statistics
have correlation ±0:4 in groups of 10. Specifically, for 1� j � k � 10,
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Fig. 3. (a) FDR when performing the BH (� � � � � � �), PP (- - - - -) and optimal ( ) procedures at level
α and (b) average power attained under these three procedures: it can be seen that tα.F̂DRλD0:5/ (PP)
attains the control and power near that of the optimal procedure whereas the more conservative
tα.F̂DRλD0/ (BH) does not

Σjk =
{ 1, j = k,
0:4, j < k � 5,
−0:4, j � 5, k > 5,

and

cov.T1, : : : ,T3000/ = Σ ⊗ I300×300,

the Kronecker product of Σ and I300×300. These statistics apparently do not meet the ‘positive
regression dependence’ condition of Benjamini and Yekutieli (2001).
1000 data sets were generated, and for each one tα.F̂DRλ/was calculated for α = 0:005, 0.01,

0.05, 0.10, 0.20. We used λ = 0 (BH), λ = 0:5 (PP) and the exact threshold (optimal) which can
be attainedbyusing the trueπ0 = 0:80 inourproposedprocedure.The trueFDRand the average
power were calculated for all these procedures. Fig. 3 shows that all three procedures control the
FDRat levelα, as the theory asserts.Moreover, tα.F̂DRλ=0:5/attains the control andpowernear
thatof theoptimalprocedure, showing the improvementofourproposedmethodologyoverBen-
jamini and Hochberg’s (1995) methodology. The numbers from this study are listed in Table 2.

4. Finite sample proofs

We first prove the conservative bias of F̂DRλ.t/ under the assumption that the p-values cor-
responding to the true null hypotheses are independent and uniformly distributed.

4.1. Proof of theorem 1
First assume that t < λ. Then

E[F̂DRλ.t/ − FDR.t/] � E

[
[{m0 − V.λ/} =.1 − λ/]t − V.t/

R.t/ ∨ 1

]
= E

[
E

[
[{m0 − V.λ/}=.1 − λ/]t − V.t/

R.t/ ∨ 1

∣∣∣∣V.t/,S.t/

]]
= E

[{m0t − V.t/}=.1 − t/

R.t/ ∨ 1

]
:
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Table 2. Numerical study of tα.F̂DRλD0/ (BH), tα.F̂DRλD0:5/ (PP) and the optimal proce-
dure under dependence†

α FDR for the following methods: Average power for the following methods:

BH PP Optimal BH PP Optimal

0.005 0.00343 0.00492 0.00516 0.0172 0.0218 0.0221
(5 × 10−4) (6 × 10−4) (7 × 10−4) (4 × 10−4) (4 × 10−4) (4 × 10−4)

0.01 0.00828 0.00934 0.00952 0.0376 0.0477 0.0483
(7 × 10−4) (6 × 10−4) (6 × 10−4) (6 × 10−4) (6 × 10−4) (6 × 10−4)

0.05 0.0403 0.0497 0.0503 0.188 0.225 0.227
(6 × 10−4) (6 × 10−4) (6 × 10−4) (9 × 10−4) (9 × 10−4) (9 × 10−4)

0.10 0.0804 0.0994 0.101 0.326 0.377 0.380
(7 × 10−4) (7 × 10−4) (7 × 10−4) (9 × 10−4) (9 × 10−4) (9 × 10−4)

0.20 0.161 0.199 0.201 0.512 0.578 0.582
(8 × 10−4) (8 × 10−4) (8 × 10−4) (8 × 10−4) (9 × 10−4) (8 × 10−4)

†The Monte Carlo standard error is listed below each number.

In going from the second to the third line, we use the fact that

m0 − V.λ/|V.t/ ∼ binomial{m0 − V.t/, .1 − λ/=.1 − t/}:
Next, assume that t � λ so that

V.λ/|V.t/ ∼ binomial{V.t/,λ=t}:

Redoing the computation as above shows that

E[F̂DRλ.t/ − FDR.t/] � E

[{m0t − V.t/} =.1 − λ/

R.t/ ∨ 1

]
:

The final result follows by showing that E[{m0t − V.t/}={R.t/ ∨ 1}] � 0: However,

E

[
m0t − V.t/

R.t/ ∨ 1

]
� E

[{m0t − V.t/}=.1 − t/

R.t/ ∨ 1
1{V.t/�1}

]
= E

[
E

[{m0t − V.t/}=.1 − t/

V.t/ + S.t/
1{V.t/�1}

∣∣∣∣S.t/

]]
:

The conclusion now follows from Jensen’s inequality. ✷

We now prove theorems 2 and 3 by using martingale methods. A similar argument has been
used to prove the ballot theorem (see Chow et al. (1971), page 26), where the argument is
attributed to G. Simons). See also Durrett (1996), page 267, where an unnecessary additional
condition is imposed.We use the fact that the randomvariable tα.F̂DRÅ

λ/ is a stopping timewith
respect to a certain filtration, which allows the use of the optional stopping theorem. Recall the
empirical processes V.t/, S.t/ and R.t/ defined in expression (2). We view ‘time’ (i.e. the thresh-
olds t) as running backwards in these empirical processes. The proof that V.t/=t is a martingale
with time running backwards is easily shown, so we omit the proof here.

Lemma 3. If the p-values of the m0 true null hypotheses are independent, then V.t/=t for
0� t < 1 is amartingalewith time runningbackwardswith respect to thefiltrationFt = σ.1{pi�s},
t � s � 1, i = 1, . . . ,m/, i.e., for s � t, E[V.s/=s|Ft ] = V.t/=t.
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The following elementary lemma, whose proof is also omitted, incorporates the stopping
times (thresholding rules) into our martingale framework.

Lemma 4. The random variable tα.F̂DRλ=0/ is a stopping time with respect to Ft , with
time running backwards. Further, for λ > 0, tα.F̂DRÅ

λ/ is a stopping time with respect to
Fλ

t =� Ft∧λ.

We are now ready to prove theorems 2 and 3. Recall that π0 = m0=m.

4.2. Proof of theorem 2
Noting that the process m t=R.t/ has only upward jumps and has a final value of 1, we see that
R{tα.F̂DRλ=0/} = tα.F̂DRλ=0/m=α. Therefore, the ratio whose expectation we must calculate
can be expressed as

V{tα.F̂DRλ=0/}
R{tα.F̂DRλ=0/}

= α

m

V{tα.F̂DRλ=0/}
tα.F̂DRλ=0/

:

Noting that V.t/=t stopped at tα.F̂DRλ=0/ is bounded by m=α, the optional stopping theorem
then implies

FDR{tα.F̂DRλ=0/} = α

m
E

[
V{tα.F̂DRλ=0/}

tα.F̂DRλ=0/

]
= α

m
E [V.1/] = m0

m
α:

4.3. Proof of theorem 3
Abbreviate tα.F̂DRÅ

λ/ by tλα. If F̂DRÅ
λ.λ/ � α then it can be seen that R.tλα/ = tλαm π̂Å

0 .λ/=α
similarly to above. Moreover, when F̂DRÅ

λ.λ/ � α, then V.t/=t stopped at tλα is bounded by
m.m − 1/={.1 − λ/α}. Thus,

FDR.tλα/ = E

[
V.tλα/

R.tλα/
; F̂DRÅ

λ.λ/ � α

]
+ E

[
V.tλα/

R.tλα/
; F̂DRÅ

λ.λ/ < α

]
:

Now

E

[
V.tλα/

R.tλα/
; F̂DRÅ

λ.λ/ � α

]
= E

[
α

1 − λ

W.λ/ + 1
V.tλα/

tλα
; F̂DRÅ

λ.λ/ � α

]

= E

[
α

1 − λ

W.λ/ + 1
E

[
V.tλα/

tλα

∣∣∣∣∣Fλ

]
; F̂DRÅ

λ.λ/ � α

]

= E

[
α

1 − λ

W.λ/ + 1
V.λ/

λ
; F̂DRÅ

λ.λ/ � α

]
,

where the last step follows by the optional stopping theorem. It also easily follows that

E

[
V.tλα/

R.tλα/
; F̂DRÅ

λ.λ/ < α

]
� E

[
α

1 − λ

W.λ/ + 1
V.λ/

λ
; F̂DRÅ

λ.λ/ < α

]
:
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The upper bound follows by

FDR.tλα/ � E

[
1 − λ

W.λ/ + 1
V.λ/

λ
α

]
� E

[
1 − λ

m0 − V.λ/ + 1
V.λ/

λ
α

]
= .1 − λm0/α � α:

5. Large sample proofs

In this section,we prove several theorems that assume the convergence assumptions of equations
(7)–(9).

5.1. Proof of theorem 4
Let t′ be the t′ > 0 such that α − F̂DR∞

λ .t′/ = " > 0. Therefore, we can take m sufficiently
large that |F̂DR∞

λ .t′/ − F̂DRλ.t′/| < "=2 which implies that F̂DRλ.t′/ < α and tα.F̂DRλ/ � t′.
Therefore, lim infm→∞{tα.F̂DRλ/} � t′ with probability 1. By theorem 6 it follows that with
probability 1

lim inf
m→∞

[
F̂DRλ{tα.F̂DRλ/} − V{tα.F̂DRλ/}

R{tα.F̂DRλ/} ∨ 1

]
� lim

m→∞ inf
t�δ

{
F̂DRλ.t/ − V.t/

R.t/ ∨ 1

}
� 0

for δ = t′=2. Since F̂DRλ{tα.F̂DRλ/} � α it follows that

lim sup
m→∞

[
V{tα.F̂DRλ/}

R{tα.F̂DRλ/} ∨ 1

]
� α,

with probability 1. By Fatou’s lemma,

lim sup
m→∞

(
E

[
V{tα.F̂DRλ/}

R{tα.F̂DRλ/} ∨ 1

])
� E

[
lim sup
m→∞

[
V{tα.F̂DRλ/}

R{tα.F̂DRλ/} ∨ 1

]]
� α:

5.2. Proof of theorem 5
For t′ > tα.F̂DR∞

λ /, we have that F̂DR∞
λ .t′/ − F̂DR∞

λ {tα.F̂DR∞
λ /} = " for some " > 0. Thus,

we can take m sufficiently large that |F̂DR∞
λ .t′/ − F̂DRλ.t′/| < "=2, and thus F̂DRλ.t′/ > α

eventually with probability 1. Hence lim supm→∞{tα.F̂DRλ/} � tα.F̂DR∞
λ / almost surely. If

F̂DR∞
λ .·/ has a non-zero derivative at tα.F̂DR∞

λ /, then it must be a positive derivative. Other-
wise, the definition of tα.F̂DR∞

λ / would be violated. Thus, there is a neighbourhood, say
of size δ > 0, such that, for t′ ∈ [tα.F̂DR∞

λ / − δ, tα.F̂DR∞
λ /], we have

F̂DR∞
λ .t′/ < F̂DR∞

λ {tα.F̂DR∞
λ /}:

By a similar argument to that for the previous case, we have that, for any t′ in this neighbour-
hood, F̂DRλ.t′/ < α eventually with probability 1. Thus lim infm→∞{tα.F̂DRλ/} � tα.F̂DR∞

λ /

almost surely. Putting these together, we have the result.
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5.3. Proof of theorem 6
By an easy modification of the Glivenko–Cantelli theorem,

lim
m→∞ sup

0�t�1

∣∣∣∣V.t/

m
− π0 G0.t/

∣∣∣∣ = 0 almost surely,

lim
m→∞ sup

0�t�1

∣∣∣∣{V.t/ + S.t/} ∨ 1
m

− {π0 G0.t/ + π1 G1.t/}
∣∣∣∣ = 0 almost surely,

where V.t/ + S.t/ = R.t/. Take any δ > 0. Then

lim
m→∞ sup

t�δ

∣∣∣∣ V.t/

{V.t/ + S.t/} ∨ 1
− π0m G0.t/

{V.t/ + S.t/} ∨ 1

∣∣∣∣
� lim

m→∞

∣∣∣∣ m

{V.δ/ + S.δ/} ∨ 1

∣∣∣∣ sup
t�δ

∣∣∣∣V.t/

m
− π0 G0.t/

∣∣∣∣ = 0 almost surely: .12/

Since limm inf t�δ{π̂0.λ/t − π0 G0.t/} � 0 almost surely, it follows that

lim
m→∞ inf

t�δ

{
F̂DRλ.t/ − V.t/

R.t/ ∨ 1

}
� 0 almost surely:

to show that limm→∞ inf t�δ{F̂DRλ.t/ − FDR.t/} � 0, it suffices to show that

lim
m→∞ sup

t�δ

∣∣∣∣ V.t/

R.t/ ∨ 1
− FDR.t/

∣∣∣∣ = 0 almost surely: .13/

Since π0 G0.δ/ + π1 G1.δ/ > 0 and these are both non-decreasing functions, it is straightfor-
ward to show that

lim
m→∞ sup

t�δ

∣∣∣∣ m

{V.t/ + S.t/} ∨ 1
− 1

π0 G0.t/ + π1 G1.t/

∣∣∣∣ = 0 almost surely:

Using this, inequality (12) from above and the triangle inequality, we obtain

0 = lim
m→∞ sup

t�δ

∣∣∣∣V.t/ − mπ0 G0.t/

{V.t/ + S.t/} ∨ 1

∣∣∣∣
+ lim

m→∞ sup
t�δ

∣∣∣∣ mπ0 G0.t/

{V.t/ + S.t/} ∨ 1
− π0 G0.t/

π0 G0.t/ + π1 G1.t/

∣∣∣∣ almost surely:

� lim
m→∞ sup

t�δ

∣∣∣∣ V.t/

R.t/ ∨ 1
− π0 G0.t/

π0 G0.t/ + π1 G1.t/

∣∣∣∣ � 0 almost surely: .14/

Now ∣∣∣∣ V.t/

R.t/ ∨ 1
− π0 G0.t/

π0 G0.t/ + π1 G1.t/

∣∣∣∣ � 2,
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so it follows that

0 = E

[
lim

m→∞ sup
t�δ

∣∣∣∣ V.t/

R.t/ ∨ 1
− π0 G0.t/

π0 G0.t/ + π1 G1.t/

∣∣∣∣
]

= lim
m→∞

(
E

[
sup
t�δ

∣∣∣∣ V.t/

R.t/ ∨ 1
− π0 G0.t/

π0 G0.t/ + π1 G1.t/

∣∣∣∣
])

� lim
m→∞ sup

t�δ

∣∣∣∣E[ V.t/

R.t/ ∨ 1

]
− π0 G0.t/

π0 G0.t/ + π1 G1.t/

∣∣∣∣ � 0,

whereE[V.t/={R.t/ ∨ 1}] = FDR.t/. Applying the triangle inequality to this result and equation
(14) implies that equation (13) holds, which completes the proof.

5.4. Proof of theorem 7
It follows from a minor modification to the proof of theorem 6 that with probability 1

lim
m→∞ inf

t�δ
{p̂FDRλ.t/ − pFDR.t/} � 0

for each δ > 0. Therefore, for each t > 0, it is straightforward to show that with probability 1

lim
m→∞

∣∣∣ inf
s�t

{p̂FDRλ.s/} − inf
s�t

{pFDR.s/}
∣∣∣ � 0:

This is just another way of writing that with probability 1

lim
m→∞ {q̂λ.t/ − q-value.t/} � 0,

for each t > 0. Now q̂λ.t/ ∧ 1 and q-value.t/ are both non-decreasing cadlag functions with
range in [0, 1]. Moreover, they each show pointwise convergence to continuous limits where the
limit of q̂λ.t/ ∧ 1 dominates that of q-value.t/. It follows by the same arguments proving the
Glivenko–Cantelli theorem (Billingsley, 1968) and similar steps to the proof of theorem 6 that

lim
m→∞ inf

t�δ
{q̂λ.t/ ∧ 1 − q-value.t/} � 0:

The desired result follows because limm→∞ inf t�δ {q̂λ.t/ − q̂λ.t/ ∧ 1} � 0. If we use the
alternative definition q̂λ.t/ = inf s�t{P̂rλ.H = 0|P � s/} = inf s�t{F̂DRλ.s/}, then the proof
is analogous.

6. Automatically choosing λ

The procedures that we have considered require the choice of a tuning parameter λ in the esti-
mate π̂0.λ/, which has a clear bias–variance trade-off. Since the mean-squared error (MSE)
lends a reasonable balance between bias and variance, our proposed automatic choice of λ is
an estimate of the value that minimizes E[{π̂0.λ/ − π0}2]. The procedure that we propose is
summarized in the following algorithm.

Step 1: for some range of λ, sayR = {0, 0:05, 0:10, . . . , 0:95}, calculate π̂0.λ/ as in Section 2.
Step 2: for each λ ∈ R, form B bootstrap versions π̂Åb

0 .λ/ of the estimate, b = 1, . . . ,B, by
taking bootstrap samples of the p-values.
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Step 3: for each λ ∈ R, estimate its respective MSE as

M̂SE.λ/ = 1
B

B∑
b=1

[π̂Åb
0 .λ/ − min

λ′∈R
{π̂0.λ

′/}]2:

Step 4: set λ̂ = argminλ∈R{M̂SE.λ/}. Our overall estimate of π0 is π̂0 = π̂0.λ̂/.

Motivation for this can be found in Storey (2002), where a similar method for automatically
choosing λ in F̂DRλ.t/ was proposed. To assess the accuracy of the procedure proposed, we
performed numerical experiments that are similar to those in Storey (2002) (the data are not
shown). This procedure worked equally well in the sense that the MSE that was estimated from
the bootstrap procedure on average had a minimum that was close to that of the true MSE.
The theoretical results in this work are for fixed λ and do not include an automatic choice of

λ. It is straightforward to show that, for a fixed and finite R, the results of theorems 4, 6 and 7
continue to hold with λ = λ̂. Moreover, as long as the size of R grows at an appropriate rate
(slower than m), it should be possible to show that the asymptotic results still hold. We leave
the details to the interested reader. Genovese andWasserman (2002b) have derived conservative
asymptotic properties of the F̂DRλ.t/ estimates as λ → 1 smoothly in m as m → ∞, which is a
more aggressive procedure than the procedure above.

7. Discussion

We have shown that F̂DRλ.t/ can be used

(a) to estimate FDRs for fixed significance regions,
(b) to estimate significance regions for fixed FDRs and
(c) to estimate FDRs simultaneously over the naturally occurring significance regions.

We have approached the problem of dependence by using asymptotic arguments. When weak
dependence exists and the number of tests is large, then our methods are valid to use. Under
independence and mixture model assumptions, Genovese andWasserman (2002b) showed that
F̂DRλ.t/ and p̂FDRλ.t/ converge to a tight Gaussian process. A functional delta method is
employed to derive asymptotic validity results for procedures based on data-dependent thresh-
olds. Genovese andWasserman (2002b) also studied the realized proportion of false discoveries
V.t/=R.t/ as a stochastic process. There are two main differences between our approach and
theirs. The first is that they viewed these procedures in terms of data-dependent thresholding
rules (which is very similar to the BH viewpoint), whereas we worked from the standpoint of
estimating the FDR from a fixed threshold. The second difference is that they made stronger
assumptions (independence, a mixture model and large m), whereas we only require indepen-
dence of the null p-values for the finite sample results, andpointwise convergence of the empirical
distribution functions of the null and alternative p-values for the asymptotic results.
We have shown in both a finite sample setting and an asymptotic setting that the goals of the

‘fixed FDR level’ and ‘fixed significance threshold’ approaches can be accomplished with
the same estimates. For this family of estimates, this is a unification of the two approaches.
In the asymptotic setting, we have also shown that the point estimates can be used to estimate
conservatively the FDR over all significance regions simultaneously, which is equivalent to
controlling the FDR at all levels simultaneously. This allowed us to prove the simultaneous
conservative consistency of the estimated q-values, which is the first proof (to our knowledge)
that FDR-adjusted p-values can be used in a simultaneous fashion with some guarantee that
they still provide control of the FDR. The main tool that we have used in this work is to trans-
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late existing FDR methods into procedures involving empirical processes. This simplifies finite
sample proofs and provides a framework for asymptotic results. Of future interest will be to
study the optimality properties of our procedures, as well as to develop methods that exploit
any known structure for a particular application.

8. Software

The methodology that has been described in this paper is available as a suite of S-PLUS and
R functions at http://faculty.washington.edu/∼storey/qvalue/.
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